UTILIZE A PESQUISA!

Protocolo HDLC

O HDLC (High-level data link control) é uma especificação do nível 2 do modelo OSI com grande utilização e que inclui diversas variantes, utiliza a transmissão síncrona de tramas, orientada por bit.

Existem três tipos de nós:

Primários: controlam a ligação e emitem comandos sob a forma de tramas
Secundários: estão sob o controlo do nó primário, emitindo as respostas aos comandos solicitados. Quando existe mais do que um nó secundário, o nó primário mantém uma ligação lógica independente para cada um.
Combinados: controla a ligação, mas também emite respostas.
Se numa linha multiponto ou ponto a ponto existe um nó primário e um ou mais secundários, a ligação é não balanceada. Se numa ligação ponto a ponto existem dois nós combinados a ligação é balanceada.

Numa ligação balanceada qualquer dos nós combinados pode iniciar uma transmissão, este modo de transmissão é designado por ABM (“Asynchronous balanced mode”).

Numa ligação não balanceada o modo normal de funcionamento é NRM (“Normal Response Mode”), os nós secundários só podem transmitir quando solicitados pelo nó primário.

Existe ainda um terceiro modo, raramente usado, que permite que numa ligação não balanceada os nós secundários tomem a iniciativa de transmitir, trata-se do ARM (“Asynchronous response mode”).

Protocolo ATM

O protocolo ATM foi concebido através de uma estrutura em camadas, porém sem a pretensão de atender ao modelo OSI. A figura abaixo apresenta sua estrutura e compara com o modelo OSI.

No modelo ATM todas as camadas possuem funcionalidades de controle e de usuário (serviços), conforme apresentado na figura. A descrição de cada camada e apresentada a seguir:

*Física: provê os meios para transmitir as células ATM. A sub-camada TC (Transmission Convergence) mapeia as células ATM no formato dos frames da rede de transmissão (SDH, SONET, PDH, etc.). A sub-camada PM (Physical Medium) temporiza os bits do frame de acordo com o relógio de transmissão.

*ATM: é responsável pela construção, processamento e transmissão das células, e pelo processamento das conexões virtuais. Esta camada também processa os diferentes tipos e classes de serviços e controla o tráfego da rede. Nos equipamentos de rede esta camada trata todo o tráfego de entrada e saída, minimizando o processamento e aumentando a eficiência do protocolo sem necessitar de outras camadas superiores.

*AAL: é responsável pelo fornecimento de serviços para a camada de aplicação superior. A sub-camada CS (Convergence Sublayer) converte e prepara a informação de usuário para o ATM, de acordo com o tipo de serviço, além de controlar as conexões virtuais. A sub-camada SAR (Segmentation and Reassembly) fragmenta a informação para ser encapsulada na célula ATM. A camada AAL implementa ainda os respectivos mecanismos de controle, sinalização e qualidade de serviço.


A tecnologia ATM utiliza a multiplexação e comutação de pacotes para prover um serviço de transferência de dados orientado a conexão, em modo assíncrono, para atender as necessidades de diversos tipos de aplicações de dados, voz, áudio e vídeo.

Diferentemente dos protocolos X.25 e Frame Relay, entre outros, o ATM utiliza um pacote de tamanho fixo denominado célula (cell). Uma célula possui 53 bytes, sendo 48 para a informação útil e 5 para o cabeçalho.

Cada célula ATM enviada para a rede contém uma informação de endereçamento que estabelece uma conexão virtual entre origem e destino. Este procedimento permite ao protocolo implementar as características de multiplexação estatística e de compartilhamento de portas.

Na tecnologia ATM as conexões de rede são de 2 tipos: UNI (User-Network Interface), que é a conexão entre equipamentos de acesso ou de usuário e equipamentos de rede, e NNI (Network Node Interface), que é a conexão entre equipamentos de rede.

No primeiro caso, informações de tipo de serviço são relevantes para a forma como estes serão tratados pela rede, e referem-se a conexões entre usuários finais. No segundo caso, o controle de tráfego é função única e exclusiva das conexões virtuais configuradas entre os equipamentos de rede.

Preparação do cabo coaxial

Embora o cabo coaxial possa ser soldado ao seu respectivo conector BNC, esse método não é o mais apropriado.
Os conectores BNC a serem utilizados com o cabo coaxial funcionam na base da pressão("crimp"), economizando um tempo enorme na confecção de cada cabo. Para preparar um cabo coaxial, você necessitará de duas ferramentas:

Descascador de cabo coaxial:



Alicate para crimp:

Certificação CCNA


Embora este seja apenas o primeiro passo na certificação da carreira Cisco, o CCNA (Cisco Certified Network Associate) é um exame difícil, se comparado a outras certificações como Microsoft. A recente inclusão de perguntas práticas tornou-o ainda mais desafiador. Sua primeira tentativa em se tornar certificado pela Cisco exige muito estudo e muita confiança naquilo que você já conhece sobre redes. Quando estiver pronto para testar as suas habilidades, pôr em prática o que conhece sobre os tópicos avaliados e se preparar para o dia do exame.
Os candidatos têm a opção de ganhar a certificação através de duas provas (ICND1 640-822 e ICND2 640-816), ou uma única prova (CCNA 640-802); a opção com duas provas tem a vantagem de permitir ao candidato focar em assuntos específicos.
Atualmente a certificação é válida por 3 anos, sendo necessário renová-la após este período, seguindo um processo semelhante ao da obtenção da primeira certificação.
  • prestar novamente a prova do CCNA ou ICND2, ou
  • prestar e ser aprovado em um dos exames de certificação de nível Professional (exemplo CCNP) ou Specialist (exceto as provas com especialização em vendas), ou ser aprovado no exame da certificação Expert CCIE.

Estes exames são conduzidos por centros autorizados, e atualmente custam US$125.00 para cada prova ICND1 e ICND2, ou US$ 250.00 para a prova única do CCNA completo.

O Conteúdo da prova CCNA
  • As funções de rede desempenhadas por cada camada do modelo de referência OSI e como elas são realizadas em dispositivos de rede
  • A funcionalidade do Cisco IOS® e dos protocolos de rede TCP/IP
  • A segmentação das redes usando router, switch e bridge
  • O uso e a configuração dos switches Catalyst ®, do STP (Spanning-Tree Protocol) e das VLANs e seus protocolos como VTP (VLAN Trunk Protocol)
  • Os conceitos que envolvem o RIP, OSPF, o IGRP, e o EIGRP.
  • A configuração, a monitorização e a verificação das listas de acess e IP padrão e estendidas
  • Os conceitos e as configurações ISDN, ADSL e Frame Relay

Aqui vai um bom link de estudo para quem pretende passar na certificação CCNA: http://www.bentow.com.br/ccna-meu-estud

ADSL: o que é e como funciona

ADSL é a sigla para Assymmetric Digital Subscriber Line ou "Linha Digital Assimétrica para Assinante". Trata-se de uma tecnologia que permite a transferência digital de dados em alta velocidade por meio de linhas telefônicas comuns. A cada dia, a tecnologia ADSL ganha novos usuários, tanto é que este é o tipo de conexão à internet em banda larga mais usado no Brasil e um dos mais conhecidos no mundo.

Modem ADSL


Funcionamento da tecnologia ADSL

A tecnologia ADSL basicamente divide a linha telefônica em três canais virtuais, sendo um para voz, um para download (de velocidade alta) e um para upload (com velocidade média se comparado ao canal de download). Teoricamente, as velocidades de download podem ir de 256 Kbps até 6.1 Mbps. No caso do upload essas taxas variam de 16 Kbps até 640 Kbps, mas tudo depente da infra-estrutura do fornecedor do serviço, o que indica que essas taxas podem ter valores diferentes dos mencionados. É por causa dessas características que o ADSL ganhou o termo "assymmetric" (assimétrica) no nome, pois indica que a tecnologia possui maior velocidade para download e menor velocidade para upload.
Repare que entre os três canais há um disponível para voz. Isso permite que o usuário fale ao telefone e ao mesmo tempo navegue na internet, ou seja, não é necessário desconectar para falar ao telefone. Para separar voz de dados na linha telefônica, é instalado na linha do usuário um pequeno aparelho chamado Splitter. Nele é conectado um cabo que sai do aparelho telefônico e outro que sai do modem.
Na central telefônica também há uma espécie de Splitter. Assim, quando você realiza uma chamada telefônica (voz), o sinal é encaminhado para a rede de comutação de circuitos da companhia telefônica (PSTN - Public Switched Telephone Network) e procede pelo seu caminho habitual. Quando você utiliza a internet, o sinal é encaminhado ao DSLAN, que é explicado logo abaixo.
Quando uma linha telefônica é usada somente para voz, as chamadas utilizam freqüências baixas, geralmente entre 300 Hz e 4000 Hz. Na linha telefônica é possível usar taxas mais altas, mas elas acabam sendo desperdiçadas. Explicando de maneira simples, o que o ADSL faz é aproveitar para a transmissão de dados as freqüências que não são usadas. Como é possível usar mais de uma freqüência ao mesmo tempo na linha telefônica, é então possível usar o telefone para voz e dados ao mesmo tempo. A ilustração abaixo exemplifica este esquema:


A tecnologia ADSL funciona instalando-se um modem específico para esse tipo de conexão na residência ou empresa do usuário e fazendo-o se conectar a um equipamento na central telefônica. Neste caso, a linha telefônica serve como "estrada" para a comunicação entre esses dois pontos. Essa comunicação ocorre em freqüências acima de 5000 Hz, não interferindo na comunicação de voz (que funciona entre 300 Hz e 4000 Hz). Como a linha telefônica é usada unicamente como um meio de comunicação entre o modem do usuário e a central telefônica, não é necessário pagar pulsos telefônicos, pois a conexão ocorre por intermédio do modem e não discando para um número específico, como é feito com o acesso à internet via conexão discada. Isso deixa claro que todo o funcionamento do ADSL não se refere à linha telefônica, pois esta é apenas um "caminho", mas sim ao modem. Quando seu modem estabelece uma conexão com o modem da central telefônica, o sinal vai para um roteador, em seguida para o provedor e finalmente para a internet. É importante frisar que é possível que este sinal saia diretamente do roteador para a internet. No Brasil, o uso de provedor é obrigatório por regras da Anatel (Agência Nacional de Telecomunicações). No entanto, essa questão não será discutida aqui.

O sinal citado acima, depois de enviado à central telefônica, é separado e os dados vão para um equipamento DSLAN (Digital Subscriber Line Access Multiplexer), que limita a velocidade do usuário e uni varias linhas ADSL (é este equipamento que faz com você navegue à 256 Kbps mesmo quando sua conexão suporta 2 Mbps) enviando o sinal para uma linha ATM (Asynchronous Transfer Mode) de alta velocidade que está conectada à internet.

Em outras palavras, a central telefônica suporta uma certa quantidade de usuários ao mesmo tempo. Cabe ao DSLAN gerenciar todas essas conexões, "agrupá-las" e enviar esse grupo de conexões à linha ATM, como se fosse uma única conexão.

Praticamente todas as empresas que fornecem ADSL só o fazem se o local do usuário não estiver a mais de 5 Km da central telefônica. Quanto mais longe estiver, menos velocidade o usuário pode ter e a conexão pode sofrer instabilidades ocasionais. Isso se deve ao ruído (interferência) que ocorre entre um ponto e outro. Quanto maior essa distância, maior é a taxa de ruído. Para que haja uma conexão aceitável é utilizado o limite de 5 Km. Acima disso pode ser possível, mas inviável o uso de ADSL.


Protocolo PPPoE

Diante das informações acima, você deve se perguntar porque em muitos casos é necessário usar um programa para se conectar à internet, se o ADSL permite uma conexão permanente usando unicamente o modem.

O ADSL por si só é um meio físico de conexão, que trabalha com os sinais elétricos que serão enviados e recebidos. Funcionando dessa forma, é necessário um protocolo para encapsular os dados de seu computador até a central telefônica. O protocolo mais utilizado para essa finalidade é o PPPoE (Point-to-Point over Ethernet RFC 2516).

O protocolo PPPoE trabalha com a tecnologia Ethernet, que é usada para ligar sua placa de rede ao modem, permitindo a autenticação para a conexão e aquisição de um endereço IP à máquina do usuário. É por isso que cada vez mais as empresas que oferecem ADSL usam programas ou o navegador de internet do usuário para que este se autentique. Autenticando, é mais fácil identificar o usuário conectado e controlar suas ações.

Você pode estar se perguntando: por que os primeiros serviços de ADSL do país davam IP fixo ao usuário, sem necessidade de usar o PPPoE, ou seja, porque o PPPoE não foi usado antes? Naquela época, o protocolo PPPoE era novo (foi homologado em 1999) e, conseqüentemente, pouco conhecido. Com isso, o usuário usava ADSL através de uma conexão direta do modem à central telefônica, sem necessidade de autenticar. Mas quando as empresas começaram a descobrir as vantagens do PPPoE passaram a implantá-lo. Isso permite à companhia ter mais controle sobre as ações do usuário

Protocolo PPPoA

PPP (point-to-point protocol) é um protocolo desenvolvido para permitir acesso autenticado e transmissão de pacotes de diversos protocolos, originalmente em conexões de ponto a ponto (como uma conexão serial).
PPPoA (point-to-point protocol over AAL5 - ou over ATM) é uma adaptação do PPP para funcionar em redes ATM.

MACA e MACAW

Um protocolo antigo criado para LANs sem fios é o MACA (Multiple Access with Collision Avoidance — acesso múltiplo com abstenção de colisão) (Karn, 1990). A idéia básica consiste em fazer com que o transmissor estimule o receptor a liberar um quadro curto como saída, para que as estações vizinhas possam detectar essa transmissão e evitar transmitir enquanto o quadro de dados (grande) estiver sendo recebido.
Vamos analisar agora como A envia um quadro para B. A inicia a transmissão enviando um quadro RTS (Request to Send) para B, como mostra a Figura (a). Esse quadro curto (30 bytes) contém o comprimento do quadro de dados que eventualmente será enviado em seguida. Depois disso, B responde com um quadro CTS (Clear to Send), como mostra a Figura (b). O quadro CTS
contém o tamanho dos dados (copiado do quadro RTS). Após o recebimento do quadro CTS, A inicia a transmissão. Agora vamos ver como reagem as estações que não conseguem ouvir esses quadros. Qualquer estação que esteja ouvindo o quadro RTS está próxima a A e deve permanecer inativa por tempo suficien te para que o CTS seja transmitido de volta para A, sem conflito. Qualquer estação que esteja ouvindo o CTS está próxima a B e deve permanecer inativa durante a transmissão de dados que está a caminho, cujo tamanho pode ser verifi cado pelo exame do quadro CTS.
Na figura abaixo, o protocolo MACA. (a) A está enviando um quadro RTS para B. (b) B está respondendo com um quadro CTS para A:

Na Figura acima, C está dentro do alcance de A, mas não no alcance de B. Portanto, essa estação
pode detectar a RTS de A, mas não a CTS de B. Desde que não interfira com a CTS, a estação é
livre para transmitir enquanto o quadro de dados está sendo enviado. Em contraste, D está dentro do alcance de B, mas não de A. Ela não detecta a RTS, mas sim a CTS. Ao detectar a CTS, ela recebe a indicação de que está perto de uma estação que está prestes a receber um quadro e,
portanto, adia a transmissão até o mome nto em que a transmissão desse quadro deve ter sido
concluída. A estação E detecta as duas mensagens de controle e, como D, deve permanecer inativa até que a tr ansmissão do quadro de dados seja concluída.
Apesar dessas precauções, ainda pode haver colisões. Por exemplo, B e C poderiam enviar quadros RTS para A ao mesmo tempo. Haverá uma colisão entre esses quadros e eles se perderão. No caso de uma colisão, um transmissor que não obtiver êxito (ou seja, o que não detectar uma CTS no intervalo de tempo esperado) aguardará durante um interval o aleatório e tentará novamente mais tarde. O algoritmo utilizado é o recuo binário exponencial, que estudaremos quando começarmos a analisar o padrão Ethernet.
Com base em estudos de simulação do MACA, Bharghavan et al. (1994) otimizaram o MACA para melhorar seu desempenho e deram ao novo protocolo o nome MACAW (MACA for Wireless). Logo no início, eles observaram que sem as confirmações da camada de enlace de dados, os quadros perdidos não eram retransmitidos até que a camada de tr ansporte percebesse sua ausência, bem mais tarde. Eles resolveram esse problema introduzindo um quadro ACK após cada quadro de dados bem-sucedido. Os pesquisadores também observaram que o CSMA tinha alguma utilidade — principalmente para impedir uma estação de transmitir uma RTS ao mesmo tempo que outra estação vizinha também estiver transmitindo para o mesmo destino. Portanto, a detecção de portadora passou a ser utilizada. Além disso, eles decidiram utilizar o algoritmo de recuo individualmente para cada fluxo de dados (par origem-destino), e não para cada estação. Essa mudança melhorou a precisão do protocolo. Por fim, foi incluído um mecanismo para que as estações trocassem informações sobre congestionamento, e também uma forma de fazer o algoritmo de recuo reagir de modo menos violento a problemas temporários, o que melhorou o desempenho do sistema.


Conteúdo extraído e adaptado da página 215 do livro Redes de computadores
Quarta edição do autor Andrew S. Tanenbaum.